无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2012美国US F=MA物理竞赛 (id: 9a791e0e5)

[复制链接]
admin 发表于 2025-12-20 23:13:50 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2012美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
A block of mass $m=3.0\,\mathrm{kg}$ is moving on a horizontal surface towards a massless spring with spring constant $k=80.0\,\mathrm{N/m}$. The coefficient of kinetic friction between the block and the surface is $\mu_{k}=0.50$. The block has a speed of $2.0\,\mathrm{m/s}$ when it first comes in contact with the spring. How far will the spring be compressed?

A. $0.19\,\mathrm{m}$
B. $0.24\,\mathrm{m}$
C. $0.39\,\mathrm{m}$
D. $0.40\,\mathrm{m}$
E. $0.61\,\mathrm{m}$


参考答案:  B


本题详细解析:
Use the Work-Energy Theorem. Th),w 7xb;tlkmo e initial kinetic energy is converted into spring potentbxo7t lwkm ;),ial energy and work done by friction. $KE_i = W_{friction} + PE_{spring, f}$ $\frac{1}{2}mv^2 = (f_k x) + \frac{1}{2}kx^2$ The friction force is $f_k = \mu_k N = \mu_k mg = (0.50)(3.0\,\mathrm{kg})(10\,\mathrm{m/s^2}) = 15\,\mathrm{N}$. $\frac{1}{2}(3.0)(2.0)^2 = (15)x + \frac{1}{2}(80.0)x^2$ $6 = 15x + 40x^2$ $40x^2 + 15x - 6 = 0$. Using the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$: $x = \frac{-15 + \sqrt{15^2 - 4(40)(-6)}}{2(40)}$ (must be positive displacement) $x = \frac{-15 + \sqrt{225 + 960}}{80} = \frac{-15 + \sqrt{1185}}{80} \approx \frac{-15 + 34.42}{80} = \frac{19.42}{80} \approx 0.243\,\mathrm{m}$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-10 17:41 , Processed in 0.040328 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表