无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2012美国US F=MA物理竞赛 (id: ce7f36fcc)

[复制链接]
admin 发表于 2025-12-20 23:13:50 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2012美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
A uniform spherical m a6, c*.kroprplav:*n5(o sjc* mx6 4 z;ithza5nyr ir4bnet has radius $R$ and the acceleration due to gravity at its surface is $g$. What is the escape velocity of a particle from the planet's surface?

A. $\frac{1}{2}\sqrt{gR}$
B. $\sqrt{gR}$
C. $\sqrt{2gR}$
D. $2\sqrt{gR}$
E. The escape velocity cannot be expressed in terms of $g$ and $R$ alone.


参考答案:  C


本题详细解析:
Escape velocity $v_e$ is the speed needed so that the total energy $E = KE + PE_g = 0$. $E = \frac{1}{2}mv_e^2 - \frac{GMm}{R} = 0$ $\frac{1}{2}mv_e^2 = \frac{GMm}{R} \implies v_e = \sqrt{\frac{2GM}{R}}$. We also know that at the surface, $g = \frac{GM}{R^2}$, which means $GM = gR^2$. Substitute this into the $v_e$ equation: $v_e = \sqrt{\frac{2(gR^2)}{R}} = \sqrt{2gR}$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-10 17:42 , Processed in 0.059395 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表