无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2012美国US F=MA物理竞赛 (id: 037023a8e)

[复制链接]
admin 发表于 2025-12-20 23:13:50 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2012美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
Inside a cart that is accelerating hori3v3hmabf-emu2ks1n o0m n d 97zontally at acceleratio ewehrxe2xp(-6f .z+zrs4m8 . jy- qryn $\vec{a}$, there is a block of mass $M$ connected to two light springs of force constants $k_{1}$ and $k_{2}$. The block can move without friction horizontally. Find the vibration frequency of the block.


A. $\frac{1}{2\pi}\sqrt{\frac{k_{1}+k_{2}}{M}+a}$
B. $\frac{1}{2\pi}\sqrt{\frac{k_{1}k_{2}}{(k_{1}+k_{2})M}}$
C. $\frac{1}{2\pi}\sqrt{\frac{k_{1}k_{2}}{(k_{1}+k_{2})M}+a}$
D. $\frac{1}{2\pi}\sqrt{\frac{|k_{1}-k_{2}|}{M}}$
E. $\frac{1}{2\pi}\sqrt{\frac{k_{1}+k_{2}}{M}}$


参考答案:  E


本题详细解析:
The constant horizontal accelera+nt8 d(dz47v br6nnhttion $\vec{a}$ of the cart acts as a non-inertial frame. This introduces a constant pseudo-force $F_{pseudo} = -M\vec{a}$ on the block. A constant force only shifts the equilibrium position of the oscillation. It does not change the restoring force or the period/frequency of oscillation. The two springs are in parallel, as a displacement $x$ stretches one and compresses the other, both creating a restoring force in the same direction. The effective spring constant is $k_{eff} = k_1 + k_2$. The frequency $f$ of a mass-spring system is $f = \frac{1}{2\pi}\sqrt{\frac{k_{eff}}{M}}$. $f = \frac{1}{2\pi}\sqrt{\frac{k_{1}+k_{2}}{M}}$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-10 17:41 , Processed in 0.038476 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表