无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2007美国US F=MA物理竞赛 (id: c1cc52939)

[复制链接]
admin 发表于 2025-12-20 23:13:49 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2007美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
A uniform disk, a thin hoop, and a uniform sphere, wl;4zfpsto/)x (: k * fr fxt/bg1aojdj71+ edall with the same mass and s s cc.l2-gg0dco i0c dk28kik7ame outer radius, are each free to rotate about a fixed axis through its center. Assum2si .cggol0 dcki 7ck-2kc 0d8e the hoop is connected to the rotation axis by light spokes. With the objects starting from rest, identical forces are simultaneously applied to the rims, as shown. Rank the objects according to their kinetic energies after a given time $t$, from least to greatest.


A. disk, hoop, sphere
B. sphere, disk, hoop
C. hoop, sphere, disk
D. disk, sphere, hoop
E. hoop, disk, sphere


参考答案:  E


本题详细解析:
All objects experience the same fo.7) oc -e)b h ys8:ykqkpwb6dorce $F$ at the same radius $R$, so the torque $\tau = FR$ is identical for all three. Angular acceleration $\alpha = \tau / I$. Angular velocity after time $t$ is $\omega = \alpha t = (\tau t) / I$. Rotational kinetic energy $K = \frac{1}{2}I\omega^2 = \frac{1}{2}I \left( \frac{\tau t}{I} \right)^2 = \frac{(\tau t)^2}{2I}$. Since $\tau$ and $t$ are identical, the kinetic energy $K$ is inversely proportional to the rotational inertia $I$ ($K \propto 1/I$). The rotational inertias are: $I_{hoop} = mR^2$, $I_{disk} = \frac{1}{2}mR^2$, $I_{sphere} = \frac{2}{5}mR^2$. Ordering the inertias from greatest to least: $I_{hoop} > I_{disk} > I_{sphere}$ (since $1 > 1/2 > 2/5$). Therefore, the kinetic energies from least to greatest are in the opposite order: $K_{hoop} < K_{disk} < K_{sphere}$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-10 17:42 , Processed in 0.038936 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表