无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2007美国US F=MA物理竞赛 (id: c7047d2db)

[复制链接]
admin 发表于 2025-12-20 23:13:49 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2007美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
A uniform disk ($I=\frac{1}{2}MR^{2}$) of mass $8.0\,\mathrm{kg}$ can rotate without friction on a fixed axis. A string is wrapped around its circumference and is attached to a $6.0\,\mathrm{kg}$ mass. The string does not slip. What is the tension in the cord while the mass is falling?


A. $20.0\,\mathrm{N}$
B. $24.0\,\mathrm{N}$
C. $34.3\,\mathrm{N}$
D. $60.0\,\mathrm{N}$
E. $80.0\,\mathrm{N}$


参考答案:  B


本题详细解析:
Let $m = 6.0\,\mathrm{kg}$ (falling mass) and $M = 8.0\,\mathrm{kg}$ (disk). 1. For the falling mass $m$, Newton's second law (with down as positive) is: $mg - T = ma$. 2. For the disk, Newton's second law for rotation is: $\tau = TR = I\alpha$. Since the string doesn't slip, $a = \alpha R$. The rotational inertia is $I = \frac{1}{2}MR^2$. Substituting: $TR = (\frac{1}{2}MR^2)(a/R) \implies T = \frac{1}{2}Ma$. 3. Substitute $T$ from (2) into (1): $mg - \frac{1}{2}Ma = ma$. Solve for $a$: $mg = a(m + \frac{1}{2}M)$. $a = mg / (m + \frac{1}{2}M) = (6.0)g / (6.0 + \frac{1}{2}(8.0)) = 6g / (6+4) = 0.6g$. 4. Now find $T$ using $T = \frac{1}{2}Ma$: $T = \frac{1}{2}(8.0)(0.6g) = 4(0.6g) = 2.4g$. Using $g \approx 10\,\mathrm{m/s^2}$, $T = 2.4(10) = 24.0\,\mathrm{N}$. (Using $g=9.8\,\mathrm{m/s^2}$ gives $T = 23.52\,\mathrm{N}$, which is closest to 24.0 N).

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-10 17:43 , Processed in 0.037415 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表