无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2007美国US F=MA物理竞赛 (id: 8e41b427c)

[复制链接]
admin 发表于 2025-12-20 23:13:49 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2007美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
A small point-like object is thrown horieprj 8vbk rp-s:6 vn;ys,l,7mzocq-ekh1:ztc /ntally off of a $50.0\,\mathrm{m}$ high building with an initial speed of $10.0\,\mathrm{m/s}$. At any point along the trajectory there is an acceleration component tangential to the trajectory and an acceleration component perpendicular to the trajectory. How many seconds after the object is thrown is the tangential component of the acceleration of the object equal to twice the perpendicular component of the acceleration of the object? Ignore air resistance.

A. $2.00\,\mathrm{s}$
B. $1.50\,\mathrm{s}$
C. $1.00\,\mathrm{s}$
D. $0.50\,\mathrm{s}$
E. The building is not high enough for this to occur.


参考答案:  A


本题详细解析:
The only acceleration is gh88ej+zo0,kn(xg7k3k* i w iebfwag 7ravity, $\vec{a} = \vec{g}$, which points vertically downward. Let's use $\vec{g} = (0, -g)$. The velocity vector at time $t$ is $\vec{v}(t) = (v_x, v_y) = (10.0, -gt)$. The tangential acceleration $a_t$ is the projection of $\vec{a}$ onto $\vec{v}$: $a_t = (\vec{a} \cdot \vec{v}) / |\vec{v}|$. $\vec{a} \cdot \vec{v} = (0, -g) \cdot (10, -gt) = 0 + g^2t = g^2t$. The perpendicular (normal) acceleration $a_n$ is the component of $\vec{a}$ perpendicular to $\vec{v}$. We can use the Pythagorean theorem for acceleration components: $a^2 = a_t^2 + a_n^2$. Since $a=g$, we have $g^2 = a_t^2 + a_n^2$. We are given the condition $a_t = 2a_n$. Substitute $a_n = a_t / 2$ into the Pythagorean relation: $g^2 = a_t^2 + (a_t / 2)^2 = a_t^2 + a_t^2 / 4 = \frac{5}{4}a_t^2$ $a_t^2 = \frac{4}{5}g^2 \implies a_t = \frac{2}{\sqrt{5}}g$. Now use the expression for $a_t$: $a_t = (\vec{a} \cdot \vec{v}) / |\vec{v}| = g^2t / \sqrt{10^2 + (gt)^2}$. $\frac{2}{\sqrt{5}}g = g^2t / \sqrt{100 + g^2t^2}$. Square both sides: $\frac{4}{5}g^2 = g^4t^2 / (100 + g^2t^2)$. $\frac{4}{5} = g^2t^2 / (100 + g^2t^2)$ $4(100 + g^2t^2) = 5g^2t^2$ $400 + 4g^2t^2 = 5g^2t^2$ $400 = g^2t^2 \implies t = \sqrt{400 / g^2} = 20 / g$. Using $g \approx 10\,\mathrm{m/s^2}$, $t = 20 / 10 = 2.00\,\mathrm{s}$. (We must check if it hits the ground: $t_{fall} = \sqrt{2y/g} = \sqrt{2(50)/10} = \sqrt{10} \approx 3.16\,\mathrm{s}$. Since $2.00\,\mathrm{s} < 3.16\,\mathrm{s}$, this event occurs.)

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-10 17:43 , Processed in 0.044242 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表