无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2007美国US F=MA物理竞赛 (id: 3a480488f)

[复制链接]
admin 发表于 2025-12-20 23:13:49 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2007美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
Find the period of smallu :kewf0hk1x) oscillations of a water pogo, which is a ddz;e)w e4/ng stick of mass gdden e)/w ;z4$m$ in the shape of a box (a rectangular parallelepiped.) The stick has a length $L$, a width $w$ and a height $h$ and is bobbing up and down in water of density $\rho$. Assume that the water pogo is oriented such that the length $L$ and width $w$ are horizontal at all times. Hint: The buoyant force on an object is given by $F_{buoy}=\rho Vg$, where $V$ is the volume of the medium displaced by the object and $\rho$ is the density of the medium. Assume that at equilibrium, the pogo is floating.

A. $2\pi\sqrt{L/g}$
B. $\pi\sqrt{\rho w^2 L^2 g / (mh^2)}$
C. $2\pi\sqrt{mh^2 / (\rho L^2 w^2 g)}$
D. $2\pi\sqrt{m/(\rho wLg)}$
E. $\pi\sqrt{m/(\rho wLg)}$


参考答案:  D


本题详细解析:
This is a simple harmonic motion problem. 1. At equilibrium: The buoyanti66iy t x lj+.pry+pv( force $F_B$ equals the weight $mg$. Let $y_0$ be the submerged depth. The submerged volume is $V_{eq} = L w y_0$. $F_B = \rho V_{eq} g = \rho (Lw y_0) g$. So, $mg = \rho Lw y_0 g$. 2. Displaced system: Push the pogo down by a small distance $y$. The new submerged depth is $(y_0 + y)$. The new buoyant force is $F_B' = \rho V_{new} g = \rho (Lw (y_0 + y)) g = \rho Lw y_0 g + \rho Lw y g$. 3. Restoring force: The net force $F_{net}$ on the pogo is $F_B' - mg$ (upwards). $F_{net} = (\rho Lw y_0 g + \rho Lw y g) - mg$. Since $mg = \rho Lw y_0 g$ (from equilibrium), these terms cancel: $F_{net} = (\rho Lw g) y$. This is the restoring force, which acts in the opposite direction to the displacement $y$. So, $F_{restore} = - (\rho Lw g) y$. 4. SHM equation: This is in the form $F = -k_{eff} y$, where the effective spring constant is $k_{eff} = \rho Lw g$. The period $T$ of a mass-spring system is $T = 2\pi\sqrt{m/k_{eff}}$. Substituting our $k_{eff}$: $T = 2\pi\sqrt{m / (\rho Lw g)}$. (Note: The height $h$ is irrelevant as long as the pogo floats).

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-10 17:42 , Processed in 0.043549 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表