无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Properties of Functions

 作者: admin 发布日期: 2024-06-09 22:22   总分: 45分  得分: _____________

答题人: 游客未登录  开始时间: 24年06月09日 22:22  切换到: 整卷模式

标记此题
1#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=x^{2}+2$ and g(x)=x-3 , for $x \in \mathbb{R}$ .
1. Find f(3) . =   
2. Find $(g \circ f)(3)$ . =   
3. Find $g^{-1}(x)$ . =  (代数式) 

参考答案:     查看本题详细解析

标记此题
2#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=x^{3}$ and g(x)=2 x-1 , for $x \in \mathbb{R}$ .
1. Find $g^{-1}(x)$ . =  (代数式) 
2. Find $(g \circ f)(x)$ . =  (代数式) 
3. Solve the equation $(g \circ f)(x)=0$ .≈   

参考答案:     查看本题详细解析

标记此题
3#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=4 x-3 and 0b z...kc qfkp $g(x)=2$ x , for $x \in \mathbb{R}$.
1. Write down the value of g(5) . =   
2. Find $(f \circ g)(x)$ . =  (代数式) 
3. Find $(f \circ g)^{-1}(x)$ . =  (代数式) 

参考答案:     查看本题详细解析

标记此题
4#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=2 x$,$ g(x)=4 x+6 $ and $ h(x)=(f \circ g)(x)$ , for $x \in \mathbb{R} $.
1. Find $h(x) $.  (代数式) 
2. Find $ h^{-1}(x)$ .  (代数式) 

参考答案:     查看本题详细解析

标记此题
5#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=\sqrt{x-3}$ , for $x \geq 3$ .
1. Find $f^{-1}(x)$ .

Let $g(x)=x^{2}+1$ , for $x \in \mathbb{R}$ . =  (代数式) 
2. Find $(g \circ f)(28)$ . =   
3. Write down the range of:
1. $f^{-1}$ ;
2. g .

参考答案:     查看本题详细解析

标记此题
6#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=x^{3}+1 $ and g(x)=x-2 , for $x \in \mathbb{R}$ .
1. Find $f(2)$ . =   
2. Find $ f^{-1}(x)$ . =  (代数式) 
3. Solve $(f \circ g)(x)=0 .$   

参考答案:     查看本题详细解析

标记此题
7#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Find $f^{-1}(3)$ .

Let g be a function such that g^{-1} exists for all real numbers. =   
2. Given that g(9)=4 , find $\left(f \circ g^{-1}\right)(4) $. =   

参考答案:     查看本题详细解析

标记此题
8#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram shows th st f xdcv t;c9fgk7db*s6 *hx3 oex2oz)a/,6he graph of y=f(x) , for $-4 \leq x \leq 5$.



1. Write down the value of:
1. f(1) ;
2. $f^{-1}(2) $.
2. Find the domain of $f^{-1}$ .
3. Sketch the graph of $y=f^{-1}(x)$ on the same grid above.
参考答案:    

标记此题
9#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=(x+2)^{3}$ , for $x \in \mathbb{R}$ .
1. Find $f^{-1}(x)$ .

Let g be a function so that $(f \circ g)(x)=27 x^{6}$ . =  (代数式) 
2. Find g(x) . =  (代数式) 

参考答案:     查看本题详细解析

标记此题
10#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=0.2 $e^{x+2}-4$ , for $-3 \leq x \leq 2$ .
1. On the following grid, sketch the graph of y=f(x) .

2. Find the coordinates of:
1. the x -intercept;
2. the y -intercept.

The graph of f is reflected in the x -axis and then translated by the vector $ \binom{1}{2}$ to obtain the graph of a function g .
3. Find g(x) .
参考答案:     查看本题详细解析

标记此题
11#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The equation of a line w/: .drpkw(rpn(i h(n $ L_{1}$ is 2 x+3 y=-5 .
1. Find the gradient of $L_{1}$ .

A second line, $L_{2}$ , is perpendicular to $L_{1}$ .   
2. State the gradient of $L_{2}$ .

The point $\mathrm{P}(4,0)$ lies on $L_{2}$ .   
3. Find the equation of $L_{2}$ , giving your answer in the form a x+b y+d=0 , where a, b, d $\in \mathbb{Z}$ .

The point \mathrm{Q} is the intersection of L_{1} and L_{2} . y=  (代数式) 
4. Find the coordinates of Q . (a,b) a =    b =   

参考答案:     查看本题详细解析

标记此题
12#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Two functions, f and goxn3 lp*(w1wlahmfch ,kd;2hq5* kk 0ayi6y) , are defined in the following table.

1. Write down the value of $f(2)$ .   
2. Find the value of $(g \circ f)(2)$ .   
3. Find the value of $g^{-1}(5)$ .   

参考答案:     查看本题详细解析

标记此题
13#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram shows the g gq.afn35p/vd47 uw00x og ndsraph of y=f(x) , for $-1 \leq x \leq 2 $.



1. Write down the value of:
1. $f(1)$ ;
2. $f^{-1}(-2)$ .
2. Find $(f \circ f)(1)$ .
3. Sketch the graph of y=f(-x) on the same grid above.
参考答案:    

标记此题
14#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Express $2 x^{2}-8 x+9$ in the form $ a(x+b)^{2}+c$ where a, b, c $\in \mathbb{Z}$ .  (代数式) 
2. Given that f(x)=x-2 and $(g \circ f)(x)=2 x^{2}-8 x+9$ , find g(x) .  (代数式) 

参考答案:     查看本题详细解析

标记此题
15#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $ f(x)=e^{x}-2 $ and $g(x)=3 x+k$ , for $x \in \mathbb{R}$ , where k is a constant.
1. Find $(g \circ f)(x)$ .  (代数式) 
2. Given that $\lim _{x \rightarrow-\infty}(g \circ f)(x)=-4$ , find the value of k .  (代数式) 

参考答案:     查看本题详细解析

标记此题
16#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $ f(x)=\frac{\ln (x+2)}{2}$, for x>-2. The diagram below shows part of the graph of f .



1. Find the coordinates of:
1. the x -intercept; (a,b) a =    b =   
2. the y -intercept.(a,b) a =    b =   
2. Find the equation of the vertical asymptote to the graph of f .x =   
3. Find the area of the region enclosed by the graph of f , the x -axis and the y -axis. A ≈   

参考答案:     查看本题详细解析

标记此题
17#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The function f is def4ld;.opf ;7/fxs jbp pined by $f(x)=\sqrt[3]{2 x+1}$ , for $-14 \leq x \leq 13$ .
1. Write down the range of f . [a,b] a =    b =   
2. Find an expression for $f^{-1}$ .  (代数式) 
3. Write down the domain and range of $f^{-1}$ .doamin [a,b] a =    b =    range [a,b] a =    b =   

参考答案:     查看本题详细解析

标记此题
18#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The fThe function f is definedz; h;tzf1phg32+b pbg by


1. Determine whether or not f is continuous at x=1 .

The graph of the function g is obtained by applying the following transformations to the graph of f :
a horizontal translation 2 units to the left, followed by
a reflection in the x -axis, followed by
a vertical stretch by a factor of 3 .
2. Find g(x) .
参考答案:    

标记此题
19#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Express 3 x^{2}+18 x+20 in the form $a(x+b)^{2}+c$ where a, b, c $\in \mathbb{Z}$ .  (代数式) 
2. Given that f(x)=x+3 and ($g \circ f$)(x)=3 x^{2}+18 x+20 , find g(x) .  (代数式) 

参考答案:     查看本题详细解析

标记此题
20#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The functions f and g h(o-o(dfw5bxz;s. ed are defined such that $ f(x)=\frac{x-2}{3}$ and $g(x)=12 x+4 $.
1. Show that $(g \circ f)(x)=4 x-4$.  (代数式) 
2. Given that $(g \circ f)^{-1}(a)=10$ , find the value of a .   

参考答案:     查看本题详细解析

标记此题
21#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{1}{4} x^{2}-2 and g(x)=x^{2}-4 , for $x \in \mathbb{R}$ .
1. Show that $(f \circ g)(x)=\frac{1}{4} x^{4}-2 x^{2}+2$ . __
2. On the following grid, sketch the graph of $y=(f \circ g)(x) $, for $0 \leq x \leq 3 $. __
参考答案:    

标记此题
22#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{1}{4}$ $x^{2}-2 $ and g(x)=x^{2}-4 , for $x \in \mathbb{R}$ .
1. Show that $(f \circ g)(x)=\frac{1}{4} x^{4}-2 x^{2}+2$ .
2. On the following grid, sketch the graph of $y=(f \circ g)(x)$ , for $ 0 \leq x \leq 3 $.
参考答案:    

标记此题
23#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The area, A , of a given square can be represe otg/yz*p f2t;nted by the function

$A(P)=\frac{P^{2}}{16}$, $\quad P \geq 0$,

where P is the perimeter of the square.
The graph of the function A , for $0 \leq P \leq 20$ , is shown below.

1. Find the value of A(20) .
2. On the grid above, draw the graph of the inverse function, $A^{-1}$ .
3. In the context of the question, explain the meaning of $A^{-1}(4)=8$ .
参考答案:    

标记此题
24#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The circumference, C , of a given circle can be represented bbnlh4vswf i;+ v)b y*;y the function

$C(A)=2 \pi \sqrt{\frac{A}{\pi}}, \quad A \geq 0$

where A is the area of the circle.
The graph of the function C , for $0 \leq A \leq 24 $, is shown below.

1. Find the value of C(24) .
2. On the grid above, draw the graph of the inverse function, $C^{-1}$ .
3. In the context of the question, explain the meaning of $C^{-1}(2 \pi)=\pi$ .
参考答案:    

标记此题
25#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The ocean pressure, P , under sea lev;a0rmci4f8b3 wh. xfxel can be modelled by the function

$P(D)=\frac{D}{10}+1$

where D is the distance in metres below sea level and P is measured in atmospheres.
A submarine cruising near the surface is submerged according to the function

D(t)=10+5 t

where t is measured in minutes and D is the distance the submarine is below sea level, measured in metres.
1. Find the composite function $P \circ D$ and explain what it means in the context of this question
2. Find and interpret $(P \circ D)(10)$ .
参考答案:    

标记此题
26#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A tyre manufacturing comp(m 6 fzbkwjqahm8; v0:any has found that the number of tyres it produces, N , can be modelled b m(mvaz :h6fkwj0bq ;8y the function

N(t)=3 t-9

where t is the number of hours the factory operates per day, with a minimum of 3 hours.
The profit the company makes, P , in dollars, depends on the number of tyres produced, and is modelled by the function

P(N)=60 N-850

where N is the number of tyres produced.
1. Find the company's profit or loss if it operates for 6 hours per day.
2. Find the company's profit in terms of the hours of operation per day, t .
3. Determine the number of hours the company needs to operate the factory per day in order to earn a positive profit. Give your answer to the nearest hour.
参考答案:    

标记此题
27#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A town is planning to construct a jogging path in a grass field 1epb59 s e k0;6 -lwy+rudjgiok8 t;-lq70 $\mathrm{~m} $ long and 70$\mathrm{~m}$ wide. The path is to be the shape of a rectangle with two semicircles of radius x , as shown in the diagram. The sides of the rectangle connecting the circles are to be 100$ \mathrm{~m}$ long.



1. Write down a function, P , (in metres) for the perimeter of the jogging path, in terms of the radius, x .
2. Determine the domain and range of P , taking into consideration the dimensions of the grass field.
3. Find an equation for the inverse function $P^{-1}(x)$ . Express your answer in the form $ P^{-1}(x)=m x+c$ .

The designers of the path are deciding whether the total length of the path should be 300 $\mathrm{~m}$, 400 $\mathrm{~m}$ , or 500 $\mathrm{~m}$ . The designers want to maximise the perimeter of the path, but fit the path in the grass field.
4. Determine which length is most suitable, given the dimensions of the grass field.
参考答案:    

标记此题
28#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Harry is planning on cons+fk8a5 jy.ame tructing a glass window in one of the outer walls of his house. The dimensionsykef+j 8.5ama of the wall space available are 2m x 2m. Harry wants the window to be in the shape shown in the diagram below. The bottom section is a rectangle and the top part is a semicircle of radius x m. Harry wants the height of the rectangle to be fixed at 1 m.



1. Write down a function P (in metres) for the perimeter of the window in terms of the radius, x .
2. Determine the domain and range of P , taking into consideration the dimensions of the available wall.
3. Find an equation for the inverse function $P^{-1}(x)$ .

Harry wants to maximise the size of the window, however the window frame that covers the perimeter of the window can only be 5,6 , or 7 metres long, due to manufacturing restrictions.
4. Determine which perimeter length is the best option for Harry.
参考答案:    

标记此题
29#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is defined as5ws.l 99e1gdfkpfru 21aiu l, $f(x)=\sqrt{\frac{6+2 x}{6-2 x}}$ , for $-3 \leq x<3 $. Find the inverse function of f , stating its domain and range.
参考答案:    

标记此题
30#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=$\frac{5}{x+1}$ , for $ x \neq-1 $.
1. For the graph of f , find:
1. the x -intercept;
2. the y -intercept;
3. the equation of the vertical asymptote.

Let g(x)=x-3 , for x $\in \mathbb{R}$. The graphs of f and g intersect at points $\mathrm{A} $ and $ \mathrm{B}$ .
2. Find the coordinates of A and B .
3. Find the equation of the straight line that passes through A and B , giving your answer in the form y=m x+c .
4. Write down the gradient of the line that is perpendicular to the line passing through A and B .
参考答案:    

标记此题
31#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram shows tfkwh/j b-s :6qn7 2qp0eqbfq1he graph of y=f(x). The graph has a horizontal asymptote at y=-2. The graph crosses the x-axis at we2 fhqq: jbnq0k6f-q bp/ 7s1x=-2 and x=2 , and the y -axis at y=2 .


$\text { On the following set of axes, sketch the graph of } y=[f(x)]^{2}-1 \text {, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima. }$
参考答案:    

标记此题
32#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Write down the domain and range of the logae6yyp plmhm qv-p- 708rithmic function $y=\log _{a}$ x where a>0 and a $\neq 1$ .
2. Given that $\log _{x^{2}} y=9 \log _{y}\left(x^{2}\right)$ , find all the possible expressions of y as a function of x .
参考答案:    

标记此题
33#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the graphs o+v44lssidopy3c a:.g j dy;1kf $y=-\frac{1}{2}|x|$ and y=2|x|-a , where $a \in \mathbb{Z}^{+}$ .
1. Sketch the graphs on the same set of axes.
2. Given that the graphs enclose a region of area 40 square units, find the value of a .
参考答案:    

标记此题
34#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functioy*0w( vh fu*crn $f(x)=x^{2} \arcsin (x)$ , for $-1 \leq x \leq 1$ .
1. Sketch the graph of y=f(x) .
2. Write down the range of f .
3. Solve the inequality $\left|x^{2} \arcsin (x)\right|>0.5$ .
参考答案:    

标记此题
35#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { The following diagram shows the graph of } y=f(x) \text {. The graph has a horizontal asymptote at } y=-2 \text {. The graph crosses the } x \text {-axis at } x=-1 \text { and } x=1 \text {, and the } y \text {-axis at } y=2 \text {. }$


$\text { On the following set of axes, sketch the graph of } y=[f(x)]^{2}-2 \text {, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima. }$
参考答案:    

标记此题
36#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=e^{3 \sin \left(\frac{\pi x}{4}\right)}$ , for x>0 .
The k th maximum point on the graph of f has x -coordinate $ x_{k}$ , where $k \in \mathbb{Z}^{+}$ .
1. Given that $x_{k+1}=x_{k}+d$ , find d .
2. Hence find the value of n such that $\sum_{k=1}^{n} x_{k}=992$ .
参考答案:    

标记此题
37#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=a x^{3}+b x^{2}+c x+d \text {, for } x \in \mathbb{R} \text {, where } a, b, c, d \in \mathbb{Q} \text {. The diagram below shows part of the graph of } y=f(x) \text {. }$



1. Using the information shown in the diagram, find the values of a, b, c and d . a =    b =    c =   
2. Let $g(x)=-\frac{3}{4} f(-2 x+1)$ .
1. Find the coordinates of the points where the graph of y=g(x) intercepts the x -axis. x =         
2. Find the y -intercept of the graph of y=g(x) .P (A,B) A =    B =   

参考答案:     查看本题详细解析

标记此题
38#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=x^{4}-x^{3}-5 x^{2}+3 x+2$ , for $x \in \mathbb{R}$ .
1. Solve the inequality f(x)<0 .
2. For the graph of y=f(x) , find the coordinates of the local maximum point. Round your answers to three significant figures.

The domain of f is now restricted to [a, b] where a,$ b \in \mathbb{R}$ .
3. 1. Write down the smallest value of a<0 and the largest value of b>0 for which f has an inverse. Give your answers correct to three significant figures.
2. For these values of a and b , sketch the graphs of y=f(x) and $ y=f^{-1}(x)$ on the same set of axes, showing clearly the coordinates of the end points of each curve.
3. Solve the equation $f^{-1}(x)=-1$ .
参考答案:    

标记此题
39#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider $f(x)=\frac{1}{2}-\ln \left(\sqrt{x^{2}-4}\right)$ .
1. Find the largest possible domain D for f to be a function.

The function f is defined by $f(x)=\frac{1}{2}-\ln \left(\sqrt{x^{2}-4}\right) $, for $ x \in D$ .
2. Sketch the graph of y=f(x) , showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.
3. Explain why f is an even function.
4. Explain why the inverse function $f^{-1}$ does not exist.

The function g is defined by $g(x)=\frac{1}{2}-\ln \left(\sqrt{x^{2}-4}\right)$ , for $ x \in(2, \infty)$ .
5. Find the inverse function $g^{-1}$ and state its domain.
参考答案:    

标记此题
40#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is d2hv1v* 9dwblwa s)o 7ou v k1rw+m42isefined by $f(x)=1+\frac{4 x}{x+3}$ , for $x \neq-3$ .
1. Sketch the graph of $y=f(x)$ , indicating clearly any asymptotes and points of intersection with the x and y axes.
2. Find an expression for $f^{-1}$ .
3. Find all values of x for which $f(x)=f^{-1}(x)$.
4. Solve the inequality $|f(x)|<2$ .
5. Solve the inequality $f(|x|)<2$ .
参考答案:    

标记此题
41#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Sketch the curve ghgzdy0or;r2q.t 96 p$ y=-\left|\frac{5}{x-2}\right| $ and line y=-x-4 on the same axes, clearly indicating any x and y intercepts and any asymptotes.
2. Find the exact solutions to the equation $x+4=\frac{5}{|x-2|}$ .
参考答案:    

标记此题
42#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
It is given that $f(x)=2 x^{4}+5 x^{3}+a x^{2}+b x+4$ , for x $\in \mathbb{R}$ , where a, b $\in \mathbb{Z}^{+}$ .
1. Given that $x^{2}+x-2$ is a factor of f(x) , find the values of a and b .
2. Factorise f(x) into a product of linear factors.
3. Sketch the graph of y=f(x) , labeling the maximum and minimum points and the x and y intercepts.
4. Using your graph, state the range of values of c for which f(x)=c has exactly four distinct real roots.
参考答案:    

标记此题
43#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The function f is defined byi+7 kr0shpkvy8o s9a2 $f(x)=e^{2 x}-4 e^{x}+2$ , for $ x \in \mathbb{R}$, $x \leq a$ , where a \in \mathbb{R} . Part of the graph of y=f(x) is shown in the following diagram.




1. Find the largest value of a such that f has an inverse function.  (数值) 
2. For this value of a , find an expression for $f^{-1}(x)$  (代数式)  stating its domain

参考答案:     查看本题详细解析

标记此题
44#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=x^{4}-0.4 x^{3}-2.85 x^{2}+0.9 x+1.35 $, for $ x \in \mathbb{R} $.
1. Find the solutions for f(x)>0 .
2. For the graph of y=f(x) ,
1. find the coordinates of local minimum and maximum points.
2. find the x -coordinates of the points of inflexion.

The domain of f is now restricted to [a, b] where a, b$ \in \mathbb{R}^{+}$ .
3. 1. Write down the smallest value of a>0 and the largest value of b>0 for which f has an inverse. Give your answers correct to three significant figures.
2. For these values of a and b , sketch the graphs of y=f(x) and $y=f^{-1}(x)$ on the same set of axes, showing clearly the coordinates of the end points of each curve.
3. Solve $ f^{-1}(x)=0.5$ .

Let $ g(x)=\frac{2}{3} \sin (2 x-1)+\frac{1}{2}$, $\frac{1}{2}-\frac{\pi}{4} \leq x \leq \frac{1}{2}+\frac{\pi}{4}$ .
4. 1. Find an expression for g^{-1} and state its domain.
2. Solve $\left(f^{-1} \circ g\right)(x)<0.5$ .
参考答案:    

标记此题
45#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A function f(x) is defined (kavi) : 4aklc+r0 nviby $f(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right)$, $x \in \mathbb{R}$
1. Show that f is an even function.
2. Find the equation of the horizontal asymptote to the graph of y=f(x) .
3. 1. Show that $f^{\prime}(x)=-\frac{2 x}{\sqrt{x^{2}}\left(x^{2}+1\right)} $ for $x \in \mathbb{R}$, $x \neq 0$ .
2. Using the expression for $f^{\prime}(x) $ and the result $ \sqrt{x^{2}}=|x|$ , show that f is increasing for x<0 .

A function g is defined by $g(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right)$, $x \in \mathbb{R}$, $x \geq 0$ .
4. Find the range of g .
5. Find an expression for $g^{-1}(x)$ .
6. State the domain of $ g^{-1}(x)$ .
7. Sketch the graph of $y=g^{-1}(x) $. Clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.
参考答案:    

总分:45分 及格:27分 时间:不限时
未答题: 已答题:0 答错题:
当前第 题,此次习题练习共有 45 道题

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-10 17:43 , Processed in 0.219523 second(s), 120 queries , Redis On.